IOActlve

SECURITY SERVICES

. I Know Where Your Page Lives

De-randomizing the latest Windows 10 Kernel

Enrigue Elias Nissim

¥ oLVl

(L ALt A (il

<y u
X8 f_ IOActive
-: Hardware | Software Wetware
= N[GHTS SECURITY SERVICES
Va4
L4

"~ whoami

 Senior Consultant at IOActive
 Information System Engineer

 Infosec Enthusiast (Exploit Writing, Reversing,
Programming, Pentesting)
» Conference Speaker:
EKOParty 11
EKOParty 12
«CansecWest 2016

« @kigueNissim

<y]

NT IOACctive

2 ,M
Hardware Software Wetware

- ar ar
- SECURITY SERVICES
NIGHTS

“ Introduction

« Back in March, Nicolas Economou and | presented several
ways of taking control of the OS by leveraging write-what-
where kernel primitives regardless of the presence of
mitigations such as DEP, ASLR, SMEP, etc.

< h .
o I0Active
- Hardware Software Wetware
»

NIGHTS SECURITY SERVICES

“ Introduction

* The technigues relied on the fact that all the paging
structures used by Windows could be always located in a
fixed region of virtual memory.

*HAL’s HEAP

« Spraying Page Directories
*Double NULL Write

* Self-Ref of Death

» See “Getting Physical: Extreme abuse of Intel based Paging
Systems”:

https://cansecwest.com/slides/2016/CSW2016_Economou-Nissim_GettingPhysical.pdf

8 | |IOActive
. Hardware |Software Wetw

ardware twar etware
SECURITY SERVICES
NIGHTS

*CVE 2016-7255

* Disclosing vulnerabilities to protect users:

* The Windows vulnerability is a local privilege escalation in
the Windows kernel that can be used as a security sandbox
escape. It can be triggered via the win32k.sys system call
NtSetWindowLongPtr() for the index GWLP _ID on a
window handle with GWL_STYLE set to WS _CHILD.

https://security.googleblog.com/2016/10/disclosing-vulnerabilities-to-protect.html

d b |

B f, IOActive
..F Hardware Software Wetware

- SECURITY SERVICES

T NIGHTS

*CVE 2016-7255

typedef struct tagWND

{
struct tagWND *parent;
struct tagWND *child,;
struct tagWND *next;
struct tagWND *owner,

[]
DWORD dwStyle; /* Window style (from CreateWindow) */
DWORD dwExStyle; /* Extended style (from CreateWindowEXx) */
HMENU hSysMenu; /* window's copy of System Menu */

[]

} WND;

(€

K~

IOActive.

Hardware Software Wetware
SECURITY SERVICES

NIGHTS

- xxxSetWindowData

case GWL_ID:

* Win95 does a TestWF (pwnd, WFCHILD) here, but we'll do the same
* check we do everywhere else or 1it'll cause us trouble.

1if (TestwndChild(pwnd)) {

* pwnd->spmenu 1is an id in this case.
dwOld = (DWORD)pwnd->spmenu;
pwnd->spmenu = (struct tagMENU *)dwData;

* Always checks Iif it is a child window with TestwndChild()

(52

IOActive

Hardware |Software Wetware

SECURITY SERVICES

(l =
31 It"

BT ONIGHTS

- Except in Win32k!xxxNextWindow...

r9d, vr9d

dword ptr [rsp+138h+var 1068], 6413h
r8d, r8d

edx, [r9+1]

rexn. s

[rsp+138h+var 110], ebx
[rsp+138h+var_ 118], ebx
xxxSetWindowPos

loc FFFFF97FFF27330E: s pmenu *= NULL?
mov rax, [rdi+8CH6h]

test rax, rax
jz short loc FFFFF97FFF27331E

dword ptr [rax+28h], 4

9,, ' |OActive

Hardwar oftware 'Wetware
SECURITY SERVICES
N|GHTS

.,,CVE 2016-7255
ki

 PoC by @TinySecEXx:
* hitps://github.com/tinysec/public/tree/master/CVE-2016-7255

‘\

>\

https://github.com/tinysec/public/tree/master/CVE-2016-7255

'f». . -
8y “ |OActive.

ardware Software Wetware

P SECURITY SERVICES
(2HNIGHTS

*_PML4 Self-Ref: OXFFFFF6FB7DBEDF68

—> 0x000 U 0x000 U 0x000 U
0x000 U
Ox1FF U Ox1FF u Ox1FF u
PDPT PD 3
\ Ox1ED S
Ox1FF S —> 0x000 S > 0x000 S > 0x000 S
PML4
Ox1FF S Ox1FF S Ox1FF S
PDPT PD PT

V7 S

AP IOActive
A ; ;
.."4 Hardware | Software Wetware

X SECURITY SERVICES
ZHNIGHTS

* 8elf-Ref of Death: OXFFFFF6FB7DBEDF68

0x000 U

Ox1FF S —> 0x000 S > 0x000 S > 0x000 S

Ox1FF S Ox1FF S Ox1FF S

PDPT PD PT

(ﬁ':\‘ }

11

<o
€

o
.

NIGHTS

IOActive
Hardware Software Wetware

ar ar
SECURITY SERVICES

“ _Exploitation Steps

12

> W oe

o o

Leverage the vulnerability and flip the U/S bit in Self-Ref
Look for a free PMLA4E to use it as a spurious entry
Use the spurious entry to read the PTE of the HAL's Heap

Use the spurious entry to write the Shellcode into a free space In
HAL's Heap

Turn off NX through the Spurious entry in the corresponding PTE.

Overwrite the HalpApicinterruptController pointer to our shellcode (it
could be the original VA or a new one as long as we clear NX)

Profit

d b |
5 4 IOActive
2 ,M
= -
Hardware Software Wetware

= ar ar
o SECURITY SERVICES
NIGHTS

“ . Our conclusions back then

* Paging structures shouldn’t be in fixed virtual region.
It can be abused by local and remote kernel exploits

 The PML4 entry (Ox1led) should be randomized

13

Y |OActive.

Hardware Software Wetware
SECURITY SERVICES

NIGHTS

~Microsoft Presentation at BlackHat 2016

Windows Kernel 64-bit ASLR Improvements

Predictable kernel address space layout has made it easier to exploit certain types of kernel vulnerabilities
64-bit kernel address space layout is now dynamic Various address space disclosures have been fixed

v Page table self-map and PFN database are
randomized

Dynamic value relocation fixups are used to

inear address PML4 Directory ptr Directory Table Offset

System region PML4 entries are preserve constant address references
randomized

¥ Non-paged pool v SIDT/SGDT kernel address disclosure is prevented
when Hyper-V is enabled

v/ System cache x hers e * Hypervisor traps these instructions and hides

V' Paged pool

Getting Physical

/' PEN database the true descriptor base from CPL>0

v/ Page tables
Target : Windows 10

/' ...and so on x v" GDI shared handle table no longer discloses
kernel addresses

Bypassing kernel ASLR

14

<y]

T IOActive

< ! ™
, ’ Hardware | Software Wetware
»

ar ar
SECURITY SERVICES
NIGHTS

“_Design Implications

« Total address space Is partitioned in two halves:
« User Address Space
« Kernel Address Space

 Virtual Addresses are canonical: bit 48-63 has the same
value as hit 47.

* The Self-Ref design requires an entire PML4 space for itself
(512 GB).

* This means the randomization of the entry Is restricted to:
2T | 2739 = 256

« Keeping the same design, only 256 regions can be used to
store the paging structures.

1 5 g l

IOActive

Hardware |Software | Wetware
SECURITY SERVICES

& 3 -

Ny IOACctive

< ! ™
= =

o Hardware Software Wetware

- ar ar
- SECURITY SERVICES
NIGHTS

* 256 Posibilities?

* Not all of them are always mapped
A mistake leads to a BSOD
* There are regions which even now remain “fixed” (and
mapped):
« HAL's HEAP - OXxFFFFFFFFFFDOOOOO

* (This means the last PML4 Entry cannot be the Auto-Mapping
one).

17

d b |
5 4 IOActive
2 ,M
= -
Hardware Software Wetware

= ardwar
o SECURITY SERVICES
NIGHTS

“ “KASLR Timing Attacks

 "Practical Timing Side Channel Attacks Against Kernel
Space ASLR” -

 No memory disclosure bug required!

 The "Double Page Fault” Technique could be used to detect
whether a page is mapped or unmapped.

18

http://www.ieee-security.org/TC/SP2013/papers/4977a191.pdf

.‘JL

e
SHONIGHTS

*_Theory behind it

Virtual Address

l

19

17 CR3

/_¢

! d Active.

ardware Software Wetware

SECURITY SERVICES

—>
MISS >

TLB —>

> /
_>
HIT

>1gn PML4l | PDPTI PDI PT| Offset

Extension

€z))\

<y]

T IOActive

< ! ™
, ’ Hardware | Software Wetware
»

ar ar
SECURITY SERVICES
NIGHTS

*_Theory behind it

There Is a measurable time difference between accessing a
mapped page and accessing an unmapped page.

* Accessing an unmapped kernel address from Ring3:
« Lookinthe TLB
« Do the PageWalk
* No Entry => PageFault

* Accessing a mapped kernel address from Ring3:
 Lookinthe TLB
« Do the PageWalk
« Cache the entry inthe TLB
* Access Violation => PageFault

20

Hardware Software Wetware

NIGHTS SECURITY SERVICES

“_Double Page Fault

UINT64 side channel exception(PVOID lpAddress) {
UINT64 begin = 0;
UINT64 difference = 0;

unsigned int tsc auxl = 0;
unsigned int tsc aux2 = 0;
__try {
begin = rdtscp(&tsc auxl);
* (char *)lpAddress = 0x00;
difference = rdtscp(&tsc aux2) - begin;

}
___except (EXCEPTION EXECUTE HANDLER) {

difference = rdtscp(&tsc aux2) - begin;

}

return difference;

(G

21

< h .

o I0Active
- Hardware Software Wetware
»

ar ar
SECURITY SERVICES

NIGHTS

“ In Practice. ..

 Problem: a lot of noisel!... Even a small CPU burst could
affect the end result.

 Unmapped Time: 3168
 Mapped Time: 3048
 Initial Difference: ~120 cycles

* During the actual execution:
 Unmapped: 3320
« Mapped: 3327

* Yes, there are times that the Mapped time Is higher than the
Unmapped one in the same run!

Conclusion: it might work, but it would take a considerable
amount of time to get consistency and reliable results

22

IOActive

Hardware |Software Wetware
SECURITY SERVICES

\ Ay ey ol A [T v
A Da €10 ! x
¢ SRR
’ e ol ~
| o z SR RN e
3 :‘. 'g. e ,.:'.s *
- 3 *_,
-

le:khaf \

LSA =2

7 DrK\Breaking\Kernel AddressSpach
! I,ay6\\andom|' ation with Inte%TSl&

$angho Lee, and Taesoo Kim
\ Georgia Insti f Technology, August 3, 2016

4 WU LY B0 -~ AUGUST < , 20168 / M A NDAL AY B AY / L AS veEGAS

https://www.blackhat.com/docs/us-16/materials/us-16-Jang-Breaking-Kernel-
Address-Space-Layout-Randomization-KASLR-With-Intel-TSX-wp.pdf

//?
=/

23

https://www.blackhat.com/docs/us-16/materials/us-16-Jang-Breaking-Kernel-Address-Space-Layout-Randomization-KASLR-With-Intel-TSX-wp.pdf

<y]

T IOActive

< ! ™
, ’ Hardware | Software Wetware
»

ar ar
SECURITY SERVICES
NIGHTS

*_Transactional Synchronization Extensions

» A feature included since Haswell (2013)

« New Instructions that allows to improve the performance of
multithreaded applications:

Hardware Lock Elision (HLE)
XAQUIRE / XRELEASE
Restricted Transactional Memory (RTM)
XBEGIN / XEND / XABORT

* The processor determines dynamically whether threads

need to serialize through lock-protected critical sections and
performs serialization only when required.

« Rafal Wojtczuk: was the first one to talk about how can be
used to attack ASLR

https://labs.bromium.com/2014/10/27/tsx-improves-timing-attacks-against-kaslr/

2

IOActive.

Hardware Software Wetware
SECURITY SERVICES

NIGHTS

*_Transactional Synchronization Extensions

25

* Programmer specified code regions are executed
transactionally. If the operation Is successful it is called an
atomic commit

» If something goes wrong, a transactional abort occurs, and
the processor continues the execution at the fallback
address provided.

8.3.8.2 Runtime Considerations

In addition to the instruction-based considerations, runtime events may cause trans
actional execution to abort. These may be due to data access patterns or micro-
architectural implementation causes. Keep in mind that the following list is not a
comprehensive discussion of all abort causes.

Any fault or trap in a transaction that must be exposed to software will be

suppressed. Transactional execution will abort and execution will transition to a non
transactional execution, as if the fault or trap had never occurred. If any exception is
not masked, that will result in a transactional abort and it will be as if the exception
had never occurred.

€ b L]
2L . IOActive
2 ,M
= -
v Hardware | Software Wetware
. 4

ar ar
SECURITY SERVICES
NIGHTS

“ Transactional Aborts

« The execution never leaves UserMode!

* This means we don’t have all the overhead associated with

the page fault handling mechanism as with __ try except
blocks.

« LESS NOISE => MORE ACCURACY

26 S/

Hardware Software Wetware

SECURITY SERVICES

® ” IOActive

2 & |

NIGHTS

- Using TSX RTM as a Side Channel

UINT64 side channel tsx(PVOID lpAddress) ({
UINT64 begin = 0;
UINT64 difference = O;
int status = 0;

unsigned int tsc auxl = 0;

unsigned int tsc aux2 = 0;

begin = rdtscp(&tsc_auxl);

if ((status = xbegin()) == XBEGIN STARTED) ({
* (char *)lpAddress = 0x00;

difference = rdtscp(&tsc aux2) - begin;
_xend() ;

}

else {
difference = rdtscp(&tsc aux2) - begin;

}

return difference;

(G

27

f

]

SHINIGHTS

- Using TSX RTM as a Side Channel

« Testing on Core i7 6700K:

« Unmapped Time: 221
« Mapped Time: 191
« Difference: ~40 cycles

* A lot faster than exceptions!

28

IOActive
Hardware Software Wetware

ardwar
SECURITY SERVICES

< h .

o I0Active
- Hardware Software Wetware
»

NIGHTS SECURITY SERVICES

“ Getting References

We need to get measures that will serve as references for both
Mapped and Unmapped pages.

« (Getting the unmapped one Is easy:
« Target the virtual address 0x0000000000000000

* For the mapped one we could use the HAL's HEAP:
OxXFFFFFFFFFFDOOOOO - We know this is fixed and mapped
even after Anniversary Patch.

« But that might change in the near future. So it's better to just
map our own, and simulate a privilege access failure
through the R/W permission.

* VirtualAlloc()

 memset() => to actually allocate the page (otherwise it’'s just
reserved)

« VirtualProtect() => change the page to be Read-Only

——

29

<
- &

.1L

s

30

T ONIGHTS

“How to determine the actual one?

IOActive
Hardw Software Wetw

ardware twar etware
SECURITY SERVICES

Now we are able to know which ones of the former list are
mapped:

Potential:
Potential:
Potential:
Potential:
Potential:
Potential:

Potential:

Oxffffd96cb65b2d90
Oxffffec763b1d8ecO
Oxffffecf67b3d9ec8
Oxffffed76bb5daedO
Oxffffedf6fb7dbed8
Oxffffee773b9dceel
Oxffffeef77bbddee8

Better... but not enough

.4"

%

“ Back to the entries!

31

In the old days, we had Oxled as the self-reference entry
Ox1ED =1 11101101

1111

1111

1111

1111

XXX

XXXX

F

F

F

8-F

0-F

And we had the formula:

UINT64 get pxe address (UINT64 address) {

UINT64 result =
= result
= result & OxXFFFFF6FFFFFFFFFS8;
return result;

result
result

address>>9;
OxFFFFF68000000000;

IOActive
Hardware Software Wetware

ardwar
SECURITY SERVICES

% -
9 f_ IOActive
_— Hardw Software Wetw

ardware twar etware
SECURITY SERVICES
NIGHTS

;,Ifnsight: Allocate Probing Pages!

* The key here Is that we know that the real PML4 will have all
these allocated!

 Let's assume Oxffffd96cbhb65b2d90 is the PML4 SelfRef.
That means the index is 0x1B2

* 3o let's assume we can allocate a page at virtual address
0x0; then the PTE describing this page should be at
OxFFFFD90000000000

32

d b |
5 4 IOActive
2 ,M
= -
Hardware Software Wetware

e ardwar
o SECURITY SERVICES
NIGHTS

‘z-,lfnsight: Allocate Probing Pages!

=———-

!

N\

PFN 1 Y ‘ I‘ . o
_______ 7

{9

33

5

34

Vad

«®

NIGHTS

“ New Ipte formula

UINT64 get pxe address (UINT64 address, UINT entry)
UINT64 result = address>>9;

UINT64 lower boundary = ((UINT64)O0xFFFF << 48)
((UINT64)entry << 39);

UINT64 upper boundary = \\

IOActive.

Hardware Software Wetware

SECURITY SERVICES

{

(((UINT64) OXFFFF << 48) | ((UINT64)entry << 39) +

0x8000000000 - 1) & OXFFFFFFFFFFFFFFF8;
result = result | lower boundary;

result = result & upper boundary;

return result;

(G

<9 :

T ONIGHTS

IOActive
Hardw Software Wetw

ardware twar etware
SECURITY SERVICES

*_ bummy(s) PML4E

35

| found that there was more than one PML4E that had all
the entries mapped to a dummy page, so the previous

check is going to pass but it isn’t actually the PML4 Self
Ref.

Solution: probe for one address we know Is

UNMAPPED => The dummy PML4E will succeed, while
the real one will fall.

.{,’."L | |
2L . _, IOActive
:w Hardware | Software Wetware
e SECURITY SERVICES
NIGHTS

“_Consistency in the Measures

* Problem: each processor has its own set of TLBs

« Solution: We need to make sure we always run on the
same core:

void set processor affinity(void) {
GROUP AFFINITY affinity = { 0 };
affinity.Group = 0;
affinity.Mask = 1;
SetThreadGroupAffinity (
GetCurrentThread (),
&affinity,
NULL) ;

}

void set thread priority(void) {
SetThreadPriority (GetCurrentThread (), 31);
}

36

%

e

37

& ‘. 2
N7 IOActive
": - Hardware Software Wetware
w

ar ar
SECURITY SERVICES
NIGHTS

- Consistency in the Measures

* Problem: The load on the CPU affects every measure
we take.

« Solution: Probe an address 200.000 and get the
average. Then repeat the process X times and get the
median. Also use global counters to keep track of
mistakes (measures that are too far from our
references). If the Global mistakes are above a

threshold, cancel the process and start over (keeping
the work done).

IOACctive
)

Live Demo

\ A
W
w 4 . [4

) N %
b~ e

= B

-

i

Ll

™~J

” '/ ~ <

\\

%

e

39

& 3 u
L. | IOACtive.
- Hardw Software Wetw

ardware twar etware
SECURITY SERVICES
NIGHTS

v What about AMD?

* Advanced Synchronization Facilities
* Instructions: SPECULATE / COMMIT / ABORT

« Wikipedia: “As of October 2013, it was still in the

proposal stage. No released microprocessors implement
the extension.”

* |t seems it remains as a proposal. No opcodes for the
Instructions:

http://developer.amd.com/wordpress/media/2008/10/24594_APM_v3.pdf

9% L]
N7 I0Active
< ! ™
= =
= Hardware Software Wetware

- ar ar
- SECURITY SERVICES
NIGHTS

“ Countermeasures / |deas

« TLB Cache modification: do not cache the PFN In the
TLB if the privileges are not met.

* Requires hardware modification

« Separate page tables for Kernel and User.
* Performance degradation

* Change the memory type for the region to something
different than Write-Back

« Switch to AMD? ;)

40

IOACctive
)

Questions?

\ A
W
w 4 . [4

) N %
b~ e

= B

-

i

Ll

™~J

” '/ ~ <

\\

IOACctive
)

Thank you

\ A
W
w 4 . [4

) N %
b~ e

= B

-

i

Ll

™~J

” '/ ~ <

\\

