
1

I Know Where Your Page Lives

Enrique Elias Nissim

De-randomizing the latest Windows 10 Kernel

whoami

• Senior Consultant at IOActive

• Information System Engineer

• Infosec Enthusiast (Exploit Writing, Reversing,

Programming, Pentesting)

• Conference Speaker:

•EKOParty 11

•EKOParty 12

•CansecWest 2016

• @kiqueNissim

2

Introduction

• Back in March, Nicolas Economou and I presented several

ways of taking control of the OS by leveraging write-what-

where kernel primitives regardless of the presence of

mitigations such as DEP, ASLR, SMEP, etc.

3

Introduction

• The techniques relied on the fact that all the paging

structures used by Windows could be always located in a

fixed region of virtual memory.

•HAL’s HEAP

•Spraying Page Directories

•Double NULL Write

•Self-Ref of Death

• See “Getting Physical: Extreme abuse of Intel based Paging

Systems”:

https://cansecwest.com/slides/2016/CSW2016_Economou-

Nissim_GettingPhysical.pdf

4

https://cansecwest.com/slides/2016/CSW2016_Economou-Nissim_GettingPhysical.pdf

CVE 2016-7255

• Disclosing vulnerabilities to protect users:

•https://security.googleblog.com/2016/10/disclosing-vulnerabilities-to-

protect.html

• The Windows vulnerability is a local privilege escalation in

the Windows kernel that can be used as a security sandbox

escape. It can be triggered via the win32k.sys system call

NtSetWindowLongPtr() for the index GWLP_ID on a

window handle with GWL_STYLE set to WS_CHILD.

5

https://security.googleblog.com/2016/10/disclosing-vulnerabilities-to-protect.html

CVE 2016-7255

typedef struct tagWND

{

struct tagWND *parent;

struct tagWND *child;

struct tagWND *next;

struct tagWND *owner;

[..]

DWORD dwStyle; /* Window style (from CreateWindow) */

DWORD dwExStyle; /* Extended style (from CreateWindowEx) */

UINT wIDmenu; /* ID or hmenu (from CreateWindow) */

HMENU hSysMenu; /* window's copy of System Menu */

[..]

} WND;

6

xxxSetWindowData

• Always checks if it is a child window with TestwndChild()

7

Except in Win32k!xxxNextWindow…

8

CVE 2016-7255

• PoC by @TinySecEx:

•https://github.com/tinysec/public/tree/master/CVE-2016-7255

9

https://github.com/tinysec/public/tree/master/CVE-2016-7255

PML4 Self-Ref: 0xFFFFF6FB7DBEDF68

10

0x000 U

0x1ED S

0x1FF S

0x000 U

0x1FF U

0x000 S

0x1FF S

0x000 S

0x1FF S

0x000 S

0x1FF S

0x000 U

0x1FF U

0x000 U

0x1FF U

PML4

PDPT PD PT

PDPT PD PT

Self-Ref of Death: 0xFFFFF6FB7DBEDF68

11

0x000 U

0x1ED U

0x1FF S

0x000 U

0x1FF U

0x000 S

0x1FF S

0x000 S

0x1FF S

0x000 S

0x1FF S

0x000 U

0x1FF U

0x000 U

0x1FF U

PML4

PDPT PD PT

PDPT PD PT

Exploitation Steps

1. Leverage the vulnerability and flip the U/S bit in Self-Ref

2. Look for a free PML4E to use it as a spurious entry

3. Use the spurious entry to read the PTE of the HAL’s Heap

4. Use the spurious entry to write the Shellcode into a free space in

HAL’s Heap

5. Turn off NX through the Spurious entry in the corresponding PTE.

6. Overwrite the HalpApicInterruptController pointer to our shellcode (it

could be the original VA or a new one as long as we clear NX)

7. Profit

12

Our conclusions back then

• Paging structures shouldn’t be in fixed virtual region.

It can be abused by local and remote kernel exploits

• The PML4 entry (0x1ed) should be randomized

13

Microsoft Presentation at BlackHat 2016

14

Design Implications

• Total address space is partitioned in two halves:

• User Address Space

• Kernel Address Space

• Virtual Addresses are canonical: bit 48-63 has the same

value as bit 47.

• The Self-Ref design requires an entire PML4 space for itself

(512 GB).

• This means the randomization of the entry is restricted to:

2^47 / 2^39 = 256

• Keeping the same design, only 256 regions can be used to

store the paging structures.

15

Potential new Self-Reference Entries

16

256 Posibilities?

• Not all of them are always mapped

• A mistake leads to a BSOD

• There are regions which even now remain “fixed” (and

mapped):

• HAL’s HEAP - 0xFFFFFFFFFFD00000

• (This means the last PML4 Entry cannot be the Auto-Mapping

one).

17

KASLR Timing Attacks

• “Practical Timing Side Channel Attacks Against Kernel

Space ASLR” - http://www.ieee-

security.org/TC/SP2013/papers/4977a191.pdf

• No memory disclosure bug required!

• The “Double Page Fault” Technique could be used to detect

whether a page is mapped or unmapped.

18

http://www.ieee-security.org/TC/SP2013/papers/4977a191.pdf

Theory behind it

19

Sign
Extension

PML4I PDPTI PDI PTI Offset

TLB
MISS

HIT

Virtual Address
CR3

Theory behind it

There is a measurable time difference between accessing a

mapped page and accessing an unmapped page.

• Accessing an unmapped kernel address from Ring3:

• Look in the TLB

• Do the PageWalk

• No Entry => PageFault

• Accessing a mapped kernel address from Ring3:

• Look in the TLB

• Do the PageWalk

• Cache the entry in the TLB

• Access Violation => PageFault

20

Double Page Fault

UINT64 side_channel_exception(PVOID lpAddress) {

UINT64 begin = 0;

UINT64 difference = 0;

unsigned int tsc_aux1 = 0;

unsigned int tsc_aux2 = 0;

__try {

begin = __rdtscp(&tsc_aux1);

*(char *)lpAddress = 0x00;

difference = __rdtscp(&tsc_aux2) - begin;

}

__except (EXCEPTION_EXECUTE_HANDLER) {

difference = __rdtscp(&tsc_aux2) - begin;

}

return difference;

}

21

In Practice…

• Problem: a lot of noise!… Even a small CPU burst could

affect the end result.

• Unmapped Time: 3168

• Mapped Time: 3048

• Initial Difference: ~120 cycles

• During the actual execution:

• Unmapped: 3320

• Mapped: 3327

• Yes, there are times that the Mapped time is higher than the

Unmapped one in the same run!

Conclusion: it might work, but it would take a considerable

amount of time to get consistency and reliable results

22

TSX to the Rescue!

23

https://www.blackhat.com/docs/us-16/materials/us-16-Jang-Breaking-Kernel-

Address-Space-Layout-Randomization-KASLR-With-Intel-TSX-wp.pdf

https://www.blackhat.com/docs/us-16/materials/us-16-Jang-Breaking-Kernel-Address-Space-Layout-Randomization-KASLR-With-Intel-TSX-wp.pdf

Transactional Synchronization Extensions

• A feature included since Haswell (2013)

• New instructions that allows to improve the performance of

multithreaded applications:

• Hardware Lock Elision (HLE)

• XAQUIRE / XRELEASE

• Restricted Transactional Memory (RTM)

• XBEGIN / XEND / XABORT

• The processor determines dynamically whether threads

need to serialize through lock-protected critical sections and

performs serialization only when required.

• Rafal Wojtczuk: was the first one to talk about how can be

used to attack ASLR

• https://labs.bromium.com/2014/10/27/tsx-improves-timing-

attacks-against-kaslr/

24

https://labs.bromium.com/2014/10/27/tsx-improves-timing-attacks-against-kaslr/

Transactional Synchronization Extensions

• Programmer specified code regions are executed

transactionally. If the operation is successful it is called an

atomic commit

• If something goes wrong, a transactional abort occurs, and

the processor continues the execution at the fallback

address provided.

25

Transactional Aborts

• The execution never leaves UserMode!

• This means we don’t have all the overhead associated with

the page fault handling mechanism as with __try __except

blocks.

• LESS NOISE => MORE ACCURACY

26

Using TSX RTM as a Side Channel

UINT64 side_channel_tsx(PVOID lpAddress) {

UINT64 begin = 0;

UINT64 difference = 0;

int status = 0;

unsigned int tsc_aux1 = 0;

unsigned int tsc_aux2 = 0;

begin = __rdtscp(&tsc_aux1);

if ((status = _xbegin()) == _XBEGIN_STARTED) {

*(char *)lpAddress = 0x00;

difference = __rdtscp(&tsc_aux2) - begin;

_xend();

}

else {

difference = __rdtscp(&tsc_aux2) - begin;

}

return difference;

}

27

Using TSX RTM as a Side Channel

• Testing on Core i7 6700K:

• Unmapped Time: 221

• Mapped Time: 191

• Difference: ~40 cycles

• A lot faster than exceptions!

28

Getting References

We need to get measures that will serve as references for both

Mapped and Unmapped pages.

• Getting the unmapped one is easy:

• Target the virtual address 0x0000000000000000

• For the mapped one we could use the HAL’s HEAP:

0xFFFFFFFFFFD00000 - We know this is fixed and mapped

even after Anniversary Patch.

• But that might change in the near future. So it’s better to just

map our own, and simulate a privilege access failure

through the R/W permission.

• VirtualAlloc()

• memset() => to actually allocate the page (otherwise it’s just

reserved)

• VirtualProtect() => change the page to be Read-Only

29

How to determine the actual one?

Now we are able to know which ones of the former list are

mapped:

• Potential: 0xffffd96cb65b2d90

• Potential: 0xffffec763b1d8ec0

• Potential: 0xffffecf67b3d9ec8

• Potential: 0xffffed76bb5daed0

• Potential: 0xffffedf6fb7dbed8

• Potential: 0xffffee773b9dcee0

• Potential: 0xffffeef77bbddee8

Better… but not enough

30

Back to the entries!

In the old days, we had 0x1ed as the self-reference entry

0x1ED = 1 1110 1101

And we had the formula:

31

1111 1111 1111 1111 1111 0101 1XXX XXXX

F F F F F 6 8-F 0-F

UINT64 get_pxe_address(UINT64 address) {

UINT64 result = address>>9;

result = result | 0xFFFFF68000000000;

result = result & 0xFFFFF6FFFFFFFFF8;

return result;

}

Insight: Allocate Probing Pages!

• The key here is that we know that the real PML4 will have all

these allocated!

• Let’s assume 0xffffd96cb65b2d90 is the PML4 SelfRef.

• That means the index is 0x1B2

• So let’s assume we can allocate a page at virtual address

0x0; then the PTE describing this page should be at

0xFFFFD90000000000

32

Insight: Allocate Probing Pages!

33

0x1B2

0x000

K

U

PFN 1

PFN 2

PFN 2

PFN 3

PFN 3

PFN 4

PFN 1

New !pte formula

UINT64 get_pxe_address(UINT64 address, UINT entry) {

UINT64 result = address>>9;

UINT64 lower_boundary = ((UINT64)0xFFFF << 48) |

((UINT64)entry << 39);

UINT64 upper_boundary = \\

(((UINT64)0xFFFF << 48) | ((UINT64)entry << 39) +

0x8000000000 - 1) & 0xFFFFFFFFFFFFFFF8;

result = result | lower_boundary;

result = result & upper_boundary;

return result;

}

34

Dummy(s) PML4E

• I found that there was more than one PML4E that had all

the entries mapped to a dummy page, so the previous

check is going to pass but it isn’t actually the PML4 Self

Ref.

• Solution: probe for one address we know is

UNMAPPED => The dummy PML4E will succeed, while

the real one will fail.

35

Consistency in the Measures

• Problem: each processor has its own set of TLBs

• Solution: We need to make sure we always run on the

same core:

36

void set_processor_affinity(void) {

GROUP_AFFINITY affinity = { 0 };

affinity.Group = 0;

affinity.Mask = 1;

SetThreadGroupAffinity(

GetCurrentThread(),

&affinity,

NULL);

}

void set_thread_priority(void) {

SetThreadPriority(GetCurrentThread(), 31);

}

Consistency in the Measures

• Problem: The load on the CPU affects every measure

we take.

• Solution: Probe an address 200.000 and get the

average. Then repeat the process X times and get the

median. Also use global counters to keep track of

mistakes (measures that are too far from our

references). If the Global mistakes are above a

threshold, cancel the process and start over (keeping

the work done).

37

38

Live Demo

What about AMD?

• Advanced Synchronization Facilities

• Instructions: SPECULATE / COMMIT / ABORT

• Wikipedia: “As of October 2013, it was still in the

proposal stage. No released microprocessors implement

the extension.”

• It seems it remains as a proposal. No opcodes for the

instructions:

http://developer.amd.com/wordpress/media/2008/10/245

94_APM_v3.pdf

39

http://developer.amd.com/wordpress/media/2008/10/24594_APM_v3.pdf

Countermeasures / Ideas

• TLB Cache modification: do not cache the PFN in the

TLB if the privileges are not met.

• Requires hardware modification

• Separate page tables for Kernel and User.

• Performance degradation

• Change the memory type for the region to something

different than Write-Back

• Switch to AMD? :)

40

41

Questions?

42

Thank you

